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Abstract—Instability of a linear dipolar rod, or Timoshenko beam, is treated without uncoupling the pair of
governing partial differential equations. It is shown by modified logarithmic arguments, that at and above
the critical load both components of displacement grow in norm for large time. Useful information on
post-buckling behaviour of the rod is thereby provided.

1. INTRODUCTION

One successful application of multipolar continuum mechanics has been to the director theory
of rods. In this context, a general nonlinear rod theory has been developed by Green and
Laws[1], and the associated linearised theory which contains as special case the Timoshenko
beam theory, has been presented by Green, Knops and Laws[2]. The latter study also included
a stability analysis of the straight rod under a large simple compression with respect to
perturbations composed of small flexural motions. In terms of the elastic constants of the
material, an upper bound was obtained on the applied compressive load in order that the
straight position of the rod be stable.

The stability analysis was continued by Knops[3] who showed in what sense the previously
derived upper bound may be regarded as critical. He proved, by means of logarithmic convexity
arguments, that for certain initial data and for loads in excess of the bound the sum of the
weighted L,-norms of the displacement and director displacement eventually becomes at least
exponentially unbounded in time. The straight position is then unstable so that the bound
represents a critical foad for stability.

Here, we extend slightly the instability analysis, but more significantly, investigate the
precise mechanism by which the straight rod loses its stability. Specifically, we wish to answer
_the question: does both the displacement and director displacement simultaneously become
unbounded in norm, or does only one constituent grow? This behaviour is important for a
knowledge of how the rod together with its cross section deforms during the post-buckling
process. Additionally, the methods developed represent a new application of logarithmic
convexity arguments to multi-component systems. We shall prove that above the critical load,
the Lrnorm of the displacement becomes at least exponentially unbounded with increasing
time, while the director displacement becomes similarly unbounded for loads which, although
exceeding the critical one, are themselves not too large. At the critical load, growth is sustained,
but now it is quadratic.

In Section 2 we set down the basic theory and briefly recount known stability results as well
as deriving a few new results about behaviour at the critical load. Section 3 establishes separate
growth estimates for the displacement and director displacement based upon logarithmic
convexity arguments. Finally, in Section 4 we demonstrate how our analysis may be extended
to other problems by considering the stability of an isotropic elastic plate subject to uniform
compression in the class of small flexural motions. Throughout, we assume existence of
classical solutions on the whole time interval.

2. BASIC THEORY AND STABILITY RESULTS

Small superposed one-dimensional flexural deformations of a straight elastic rod subjected
to a large simple compression are governed by the coupled pair of partial differential equations
(see Green, Knops and Laws{2])
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where x €0, 1] is the non-dimensionalised spatial coordinate defining points on the rod, ¢ (=0)
denotes the time variable, v(x, t) is the non-dimensionalised displacement of the rod perpendi-
cular to the rod and b(x, t), the relevant director displacement, is a measure of the shear in the
rod along the rod. Also, § m, n are positive constants depending upon the material and rod
length, and A2 is a positive parameter proportional to the compressive stress in the rod.

We examine the stability and instability of the null solution v =0, b =0 to eqns (1) and (2)
subject to the ends of the rod being both either simple-supported or clamped. The appropriate
boundary conditions are respectively:

b b . .
v(0,t)-—a(0,t)—-0, v(l,t)—ax(l,t)——(),tZO, 3)
v(0,)=b(0,1)=0, v(l,)=b(1,1)=0,t =0. )]
Initial conditions are taken to be

v(x’ 0) = UO(X)9 b(xv 0) = bo(x)' X E [09 1] (5)

dv . ab 3
E(xq 0)" l)o(X), E(x, 0)" bO(x)’ X E[O’ 1] (6)

where vy, by, g, bo are prescribed functions.
We define the kinetic and potential energies respectively by

K@= % o| [m (%;—’)2 +n (Z—?)z] dx, 7
V() = % L ' {g(%)2+ b2+ (1- 1) (%%)2+ 2 i;%} dx. @®)

It immediately follows from (1) and (2) by integration combined with use of (3) and (4) that total
energy of the system is conserved:

E@)=K(t)+ V(t)= E(). 9

A straightforward calculation based on a priori inequalities [2, eqn 7.18] shows that the
potential energy is positive-definite provided A%< k?, where

k2= w21+ ¢xd) (10)
for simply-supported ends and
k*=4w*(1+ 4¢n?) (1)

for clamped ends. On taking E(t) as Liapunov function, stability may be established easily for
A2 < k? with respect to the measure

sup max lo(x, )]+ |b(x, 1)1, (12)

t>0 x€f0,

and the initial measure E(0). Details may be found in Green, Knops and Laws[2].

To derive uniqueness of the solution to (1) and (2) together with some preliminary growth
estimates we employ logarithmic convexity arguments and for later reference briefly repeat a
procedure described by Knops{3] (see also Knops and Payne[5]). Thus, consider the function
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F(t) defined by

1
F(t)= f (mv*+ nb?) dx + a(t + to)?, (13)
0
where a, t, are positive constants to be subsequently determined. Differentiation of (13) leads to

(r) 2 I %+ nb b ) dx +2a(t + 1), (14)

9;_5.(;) 2[[ av) ( )]dx+2f [mv—;+nb—22-]dx+2a 15)

On substituting in (15) for the inertia terms from (1) and (2) and integrating by parts, we obtain

2
%—g(t) 4K(t)-4V(t)+2a (16)

=8K(t)—-4E(0)+2a, an

where conservation of energy (9) has been used to derive (17). Next, we take (14) and (17) and
apply Schwarz’s inequality to readily derive the following inequality:

2 2
F %}‘; ((:11:) = -2a +2E(O)F(e). a8

To prove uniqueness it must be demonstrated that only the null solution exists to (1), (2) subject
to homogeneous initial data (5) and (6). But then E(0) = 0 and so on setting a = 0, the right side
of (18) vanishes. Let us suppose the solution is non-unique, so that F(¢t) >0 for t €(¢,, t,). Then
from (18) we have

d2
a—tz(ln F)=0, te€t, b)), 19
which on integration gives
F)s[F)I™ " [F@e) e, tE(th, b). 20

By continuity F(t,)=0. Therefore, we may conclude from (20) that F(¢)=0, t €[t 1),
contrary to hypothesis and so uniqueness is established. We note that the proof does not rely
upon any sign-definiteness assumptions and, in particular, remains valid even when £ m, n, A?
are allowed to become negative. Furthermore, suppose F(¢) vanishes at some instant ¢, and
that E(0) <0. Then, we may reverse the time direction in the above argument to show that F(t)
vanishes for all time. Thus, in what follows, we are justified in assuming for E(0)<0 and
non-zero initial data that F(t) never vanishes for any t. To treat instability, we first impose the
restriction A>> k?; the case A% = k? will be discussed later in this section. The potential energy
ceases to be positive-definite and hence initial data can be chosen to make E(0) < 0. We select a to
satisfy a + 2E(0) < 0. By hypothesis, F(t) is always strictly positive, so that inequality (18) may be
written in the form ( 19), which as before may be integrated to give an inequality of type (20) From
of [0, T in the class of solutions for which F(T) is bounded. An alternative integration of (19)
yields

F(t)= F(0)exp [‘ dF

(O)IF(O)] @

Irrespective of the initial data, dF(0)/d¢ may be made always positive by suitable choice of t,.
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Consequently, we conclude from (21) that the sum of the weighted L,-norms of the displace-
ment and director displacement increases at least exponentially for sufficiently large times.

A similar estimate may be obtained for the kinetic energy (7). We integrate (19) once to
obtain

F(t)dF(O) dF

and apply Schwarz's inequality to get after setting a =0,

G(t) dG(0) _
where
]
G(t)= f (mv*+ nb? dx. 24
0

Thus, the kinetic energy has the same growth behaviour as F(¢). In particular, when the initial data
is such that E(0) <0, K(¢) increases at least exponentially for sufficiently large time.

We next examine the case A= k. From inequalities given in [1, eqn 7.18] it follows that the
potential energy is positive semi-definite (V(¢) =0, t =0) and therefore

K(t)< E(0). (25)

We deduce from (5) and (17) with a« = 0 that

2
d—d(—igﬂ <4E(0) (26)
and so
60 =60+1959 1 20Eq), @7

which shows that the constituent displacements in L,-norm possess at most quadratic growth in
time. We shall identify conditions when there is precisely quadratic growth.

Select initial data to make V(0) =0, so that ve(x) and bo(x) are solutions to the associated
equilibrium problem. Furthermore suppose

4G G T
96 0)>0, [E{“”] = 8K(0)G(0). (28)

By continuity, there exists an instant ¢, such that

dG
P TR U (29)

Set a = 0 in (2.18), multiply by G~3(t) dG(#)/dt and then integrate to get
[dG(” / G(t)] >8K©)G(t), €D, ). 30)

We therefore conclude that (28) holds on [0, ) and so also does (30). A further integration of
(30) therefore leads to

G(t)= G0)+2VIEO)GO)] +2°G(0), >0 31
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which on recalling (27) shows that G(¢) has precisely quadratic growth. Furthermore, by means
of Schwarz’s inequality applied to (30) we have

KO)y<K(®) (32)
which with (25) yields
K=K, V@)=0. 33)

The identical vanishing of the potential energy means that v(x, #) and b(x, ) are proportional to
the respective constituents #(x), b(x) in the associated equilibrium problem, and by substitution
into (1) and (2), it easily follows that

o(x, )=, o(x)1+1),  b(x, t)= cb(x)(1+1), (34)

where c,, ¢, are constants. (Recall that nontrivial 5, b exist since A2= k?).

Thus, under initial data (28) together with V(0) =0 we have obtained the complete solution
to our problem when A%2= k?, and we can see from (34) that both constituents grow in norm.
The same information in the case A2> k* cannot be derived from (21) which gives growth only
of the sum of the respective norms. It is therefore natural to explore growth behaviour in these
other cases for each constituent separately and this is carried out in the next section. It is finally
worth remarking that the combined results of this section establish that A2 < k? is necessary for
the stability of the null solution with respect to the measures E(0) and (8).

3. CONSTITUENT INSTABILITY

In the previous section, we saw that above the critical load initial data may be chosen such
that the displacement and director displacement become unbounded in thé aggregate norm (24)
for sufficiently large time. Clearly, this behaviour may be caused by growth of either one or
both constituent displacements, or by each having oscillations of increasing amplitude exactly
out of phase. The precise nature of the growth pattern is important when investigating
post-buckling behaviour of the director rod, since it is of obvious interest to discover whether,
for instance, the rod buckles without excessive longitudinal shear (represented by b(x,t?)
remaining bounded.) A farily complete analysis of this question has just been given for the
critical load (A% = k?), and here we wish to investigate what happens when the load is above its
critical value (A2> k?). We prove, by methods applicable to more complex multi-component
problems, that in general both displacements grow. In the next section, we briefly extend the
analysis to plates.

Let us suppose, therefore, that initial data is chosen such that G(¢), given by (24), becomes
unbounded in time. When E(0) <0, (33) implies that the kinetic energy K(¢) possesses the same
behaviour. By using a similar argument, this conclusion may be proved also to hold in the case
E©0)>0, V(0)<0, (dGO)/dt)> 0.

Let us now consider the conservation of energy (9). Completion of the square with respect
to b and dv/dx in the potential energy (8) at once leads to

1 80 2
K(1)— & f (—) dx < E), (35)
o \0X
and hence it follows that

fo ' (g—:)z dx (36)

begomes unbounded with G(t). We next separately consider the cases (a) ¢k2< £ 2<1 and (b)
=1,
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(@) &k2<ir?<i
We apply the arithmetic-geometric mean inequality to the potential energy and obtain from
the conservation of energy (9) the inequality

K(t)\ I b*dx + E(0); (37

thus the Ly-norm of the director displacement has the same growth as G(t).

Integration by parts of the cross term in the potential energy followed by another ap-
plication of the arithmetic-geometric mean inequality enables us to derive from (9) a second
inequality

K(r)+(1—a2)f( )dx<§f v2dx + E(0), (38)

and consequently, the L,-norm of the displacement likewise increases as G(t).

(b) &Al=1
We introduce the auxiliary function J(¢) defined by

1 1
J(r)=3j0 mv’dx—L nb*dx, (39)

On differentiating twice, using eqns (1) and (2) together with an integration by parts and
conservation of energy (9), we obtain

410 =~4E@+4 f fom(2 )+ e(2 ) +5-a-9(2) e
> ~4E(0). (40)

Integration immediately yields
dJ 2
I(l)?](O)+ta(0)—2t E(0), 41

and hence addition of (21), (or its equivalent when E(0)> 0, V(0)<0, (dG/d#)(0)> 0) and (41)
shows that the L, norm of the displacement increases with G(t).

It has thus been proved that in both cases, the norm of the displacement becomes
unbounded with G(t). Also, in the first case, that is when the compressive load is not too large,
the director displacement likewise becomes unbounded with G(¢). Whether there is growth of
the director displacement when £A2= 1 remains an open question.

4, SMALL DISTURBANCES OF AN ISOTROPIC ELASTIC PLATE
UNDER UNIFORM COMPRESSION
Green and Naghdi[5) have discussed the theory of small deformations superimposed upon a
large deformation for an elastic shell. In particular, they studied equations for the small motion
of an isotropic elastic plate subjected to large extension in two perpendicular directions. They
showed that for transverse flexural motions the equations of the plate can be written in the
form

2

B by~ Kb + i) = pui( 5rE) @

2
dh® (B + AUt ga) — Ef*PU 0p = po (%‘;) @3)
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where the summation convention and comma notation are employed, greek indices range over
the set {1,2}, po, d, j, £ are positive material constants, h*®** is a positive definite, isotropic
material fourth-order tensor and h®® is a positive diagonal material tensor. Also £ is a
positive diagonal tensor and represents the compressive loading of the plate. We consider these
equations in a bounded regular region {2 of R% It follows, under boundary conditions of either
simply supported edges or clamped edges (see Green and Naghdi[S]) that there is again
conservation of energy given by

1 u\> . “ a
E()y=3 fn [po((s';-) + ,b;) + b, Do + hoB(b, +du,)(be +dut g) — £ P 4u J,] dA
= E(0), (44)

where dA denotes the element of area in the plate.

Green and Naghdi showed that the energy functional is positive definite provided ¢, and
. hence the applied load, is less than a maximum value 6. For £ < 6, they were then able to deduce in
the usual way that the null solution is Liapunov stable with respect to norms [ u? dA, fa by’ and
initial norm E(0). When £ = 6, the energy functional becomes non-positive definite and using
logarithmic convexity, it is again easy to show that for negative initial total energy, the measure
F*(t) defined by

F*(t)= fn po(u® + jbg®) dA (45)

is at least exponentially increasing for large time.
Up to this point we have not assumed that the plate is under uniform compression. If this
assumption is now made, then

h*® = h5°8 (46)
f* = f5° @7)

where h and f are positive scalars, and 8 is the Kronecker delta. It is then easy to show, as in
Section 3, that when E(0) <0, the measure fq pou>dA grows at least exponentially. Further-
more, provided d*h — £%f >0, the measure fopojbs’ dA also grows at least exponentially.
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